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Numerical Solution of Two-Dimensional or Axi-Symmetric
Incompressible Flow Using the Vorticity Equations

Yang-Moon Koh* and P. Bradshaw**
(Received November 19, 1993)

A method to integrate the vorticity-velocity form of two-dimensional or axi-symmetric incom
pressible Navier-Stokes equations is described. The method employs equi-potential lines and
stre:amlines of an inviscid flow as coordinate lines and the velocity field is determined from the
vorticity distribution with boundary conditions on the normal velocity only, while the tangential
velocities are used as boundary conditions for the vorticity. The results of numerical experiments
on time-dependent flow past an impulsively started circular cylinder and sphere are, then,
presented to demonstrate the performance of the scheme. Numerical results show that the present
mel:hod is very stable and accurate.

Ke:y Words: Incompressible Flow, Velocity-Vorticity Formulation, Equi-Potential and
Streamline Coordinates, Circular Cylinder, Sphere.
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a, i3 : Stability parameters. Eqs. (44) and
(45)

8" 8,. 8" : Differencing operators, Eq. (28)
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: Reynolds number, VoL/1.I
: Components of vorticity flux
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1. Introduction

The incompressible Navier-Stokes equations
are much simpler than the compressible ones, but
look more difficult to solve numerically. The
absence of time derivative in the continuity equa
tion makes it hard to provide an appropriate
time-marching procedure. Another cause of the
computational difficulty is that the continuity
equation contains only velocity components, and

there is no obvious link with pressure as there is
for compressible flow through the density (Flet
cher, 1988, p. 328). These difficulties are usually
worked out by employing the Poisson equation
for pressure instead of the continuity equation
(Harlow and Welch, 1965; Chorin, 1968; Patan
kar and Spalding, 1972) or, in two dimensions, by
introducing the stream function (Campion
Renson and Crochet, 1978; Rubin and Khosla,
1981; Jordan, 1992).

The vorticity-velocity formulation can be
another alternate approach to the numerical solu
tion of the incompressible Navier-Stokes equa
tions. The kinematic definition of vorticity

together with the continuity equation can be used
to get the velocity field, while the vorticity distri
bution is got from the vorticity transport equa
tion. In previous studies (Fasel, 1976; Dennis et
aI., 1979; Fasel and Booz, 1984; Bontoux et aI.,
1986», the velocity field was usually obtained by
solving the Poisson equation

(1)

does not decompose into three Poisson equatio
ns for each of the velocity components and it be
comes difficult to solve it. Likewi;se, Koh's me
thod(Koh, 1987} is applicable to the equations
expressed in rectangular Cartesian coordinates
only. It means that the method will be difficult to
be used to solve the problems with curved boun
daries. This paper treats the velocity-vorticity
formulation for the unsteady two-dimensional or
axi-symmetric incompressible flows and a method
to solve them, which can be used to solve any
two-dimensional or axi-symmetric incompressible
flow problems. Equi-potential lines and stream
lines of an inviscid flow are used as coordinate
lines and the geometric complexity has virtually
no effect on the solving procedure. One needs
only to solve the potential flow in addition. Then
the remaining numerical procedures will be near
ly the same in all cases and can be done in
routine. Though only two-dimensional and axi
symmetric flows are considered here, the present
method can also be extended easily to three
dimensional flows over two-dimensional or axi
symmetric bodies, e.g., flows over yawed cylinders
and bodies of revolution.

In the remainder of this paper, the method will
be described in detail and demonstrated via sam
ple examples, the time-dependent flow past an
impulsively started circular cylinder and sphere.
Numerical results show that the present method is
very stable and accurate.

2. Governing Equations and Boundary
Conditions

Gatski et al.( 1982; 1989), on the other hand, got
the vdocity field directly from the discrete form of
the continuity equation and the kinematic defini
tion of vorticity. Koh( 1987) showed that the
resulting system of algebraic equations got by
discrt:tizing the definition of vorticity and conti
nuity eqaution can be reduced to a more easily
tractable system of equations, and one needs to
solve. in effect, only one three-dimensional and
then one two-dimensional Poisson equation to get
all the three velocity components.

In curvilinear coordinates, however, Eq. (I)

2.1 Governing equations
The continuity equation,

\7 • v=O,

definition of vorticity,

\7x v=co,

and vorticity transport equation,

aco-a:r=\7X Q,

together with

(2)

(3)

(4)
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1
Q = v X (d - Re \7 X (d, (5)

In addition, we need the third scale factor h3

which becomes

and

(15)

where, u, v, and OJ represent the velocity compo

nents in r/J - and IjJ - directions and vorticity,

respectively.
To derive Eq. (13) from Eq. (4), one should

and

(a)

h3 = ym,

when, as the third coordinate, the distance normal
to the ¢ -1jJ plane is taken in a two-dimensional

flow and the azimuthal angle in an axi-symmetric

flow.
The complex flow region in the physical x-y

space is transformed into a rectangular region {¢s
< ¢ < ¢e, 0 < IjJ < ljJe} in the r/J -1jJ coordinate
space (Fig. I) and Eqs. (2) to (5) become, respec

tively,

(8)

(7)

(6)1 av
-\7(P+~v' v)=--Q2 ar'

dr/J= vxdx + vydy

and

Uotr=--
L

Re= UoL,
II

where II is the kinematic viscosity of the fluid.

2.2 Transformation of governing equations
In a two-dimensional or axi-symmetric poten

tial flow the velocity potential r/J and stream

function (Stokes' stream function when the flow is

axi-symmetric) IjJ are related to the velocity com

ponents vx, Vy by equations

which is, in fact, the integral of the vortIClty

transport equation, Eq. (4). In the above equa
tions, all variables are non-dimensionalized using

the reference velocity Uo and reference length L.
Thus the dimensionless time r and Reynolds

number Re become, respectively,

where the exponent m is 0 for the two
dimensional flow and I for the axi-symmetric one.

In the axi-symmetric flow x and yare the distance
along and from the axis of symmetry, respectively.

Thus the scale factos h¢, h~ ofthe r/J-1jJ coordinate
system become

form a complete system of equations for the

incompressible flow and the velocity v and vor
ticity (d can be obtained by solving the above

system of equations with appropriate boundary

conditions. The pressure p can then be calculated
from the momentum equation,

(9)

and

(10)

where

;;---'---'---~-l-J......1.+-.l-J.---'-,.J;,-1----l.---L.J_ cP
CPs CPf 0 CPb CPe

(b)

Fig. 1 Mapping of the flow region. (a) Physical x-y
space; (b) Computational ¢-r/J space
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and

respectively. It is simple to decouple the velocity
component v from u in Eqs. (17) and (18) and
get

parabolic partial differential equation, the value
of the vorticity or its flux at the boundary must be
known. Thus the appropriate boundary condi
tions to solve the system of governing equations
are conditions on the normal velocity components
and tangential vorticities at the boundary of the
region.

In most practical problems, the boundary
conditions are given in terms of velocities rather
than vorticities. But this does not usually cause
any difficulty. In most external flows, as an exam

ple, we can assume that vorticities will be zero at
inflow boundaries and at boundaries far from the
solid body and that the normal components of
vorticity gradients will be zero at the outgoing
boundary. On solid boundaries, however, some
care should be taken. The condition on the nor
mal velocity can be used with Eqs. (17) and (18)
to determine the velocity in the region. But the

velocity thus determined may not satisfy the
no-slip condition, unless the vorticity distribution
is such that the resulting velocity satisfies it. In
other words the no-slip condition is not a condi
tion for the velocity but for the vorticity. This is
understandable, if we consider that the solid
boudary is a distributed source of vorticity and
that the vorticity is continuously generated at the
solid boundary to make the relative velocity there
zero (Lighthill, 1963, p. 54). Thus we have boun
dary conditions for the flow, say, around a
symmetric body which is set impulsively to move
in a constant velocity as (Fig. I (b) )

(22)

(20)

(21 )

(19)

(17)

(16)

(18)

u'=u/qq , v'=v/qp,
Q~=Q¢/qp, and Q~=Q",/qp,

Eqs. (11) to (15) are simplified, deleting primes
from dependent variables, to

note that Q", is not the ¢-component but the
¢-component of the vector Q. Similarly -Q¢ is
the ¢-component of Q. In a two-dimensional
flow, Q¢ and Q", defined as above can be inter
preted as components of the vorticity-flux vector
inr/J- and ¢-directions, respectively. But, in a
thn~e-dimensional flow, the physical meaning of
the vector Q is not clear. Truesdell (1954, p. 77)

identified the convective part v X 1IJ of Q as a
Lamb vector.

If we put

which may be used as the governing equation
instead of Eq. (18). But, because of reasons ex
plained in the next section, we will take Eq. (18)
rather than Eq. (22) as the governing equation.

23 Boundary conditions
The motion of a (compressible) fluid occupying

any limited simply-connected region is determi
nate: when we know the values of the expansion,
and of the component vorticities, at every point of
the region, and the value of the normal velocity at
every point of the boundary (Lamb, 1945, p. 207).
Thus to get velocities inside the region from Eqs.
(17) and (18) the normal components of velocities
on boundaries are necessary. To compute vor
ticities in the region from Eq. (19) which is a

u=l, w=o at ¢= ¢s,

~f=o, aw_O at ¢=¢e,a¢-

v=O, w=O {¢=Oat
¢<¢f' ¢>¢b

v=O, w=O at ¢'=¢e,

u=O, v=O {¢=O (23)at
¢f< ¢< ¢b

where ¢f and ¢b are velocity potentials at the
front and rear stagnation point, respectively. In
certain cases (say, the internal flow or the uniform
shear flow), inflow vorticities are not zero and
should be specified accordingly (and normal
velocities as well).
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2.4 Equations for pressure

Once the velocity and vorticity are determined,
the pressure can be obtained by integrating the
momentum equation, Eq. (6), or

_ apt _ au _Q
ar/J - ar '" (24)

etc., where f represents any dependent variable

and /1 r a time step, and employ the notation

3_/;7j= (H+l/2,j- H-1/2,j) / /1rP;,

ad,~j+ll2= (f/'.i+l - fi~j) / /11/Jj+1/2, (28)
3r/U I/2 = (/;7/1- fi~j)//1r,

To compute the pressure at a point, integration

can be done following any paths connected by
lines of constant r/J's and I/J's from a point of

reference to that point. Equation (6) says that the

vector av / ar - Q is irrotational and, thus, its
integral does not depend on the path integration. (a) Internal mesh

CPi+l
I I

I I ~
I ~ '.Lz;P;2:! /3, i2:!1/2 -.±- ---t--
I u ;,i+ 1/Z I, -?-

~ <l
I v;+1/2.j

I c.J. . IQ
I

,,) I 'Pi+l/Z,j

- -- --1-- ---1---
I I
I 6.cp I
I

I
6.cpi+ 1/2

+
~-(25)

(26)

and

_ maPt_~+Q
Y ai/J - ar -,

where Pt is a total pressure, i.e.,

3. Numerical Procedures rpi+l

3.1 Computational grid system and discre
tization

The computational grid system used in the

present work is shown in Fig. 2 together with the

locations of the variables on the cell. The

computational domain is subdivided into
computational cells by grid lines,

¢=¢i' i=O,I,2,···, i max'

.6rpi+1/2
.6rp; I

I I
I

I I
- __ J. ___

I,-;---- - t-- - - - - -
I U;,3/2 I,

~I Wi,' Vi+1/2,1 <J
I I N

__ 1 __
~-l---

"-- -- ~I <J(Ji,O

and (b) Mesh near the boundary </1=0

Let

and

/1l/Jj+1I2= I/Jj+l -I/Jj.

In addition, we draw auxiliary grid lines,

r/Ji+l + Pi
2

and

/1rPi= rPi+l/2- rPi-I/2, /1l/Jj= I/Jj+1/2-l/Jj-1/2'

We will also write

(27)

CPo
I I

I I
~I I

..,..,---t------r--- - :±:.
Ua.j+1/

f
, Ul.i+l/zl· .- -?-

-?- <l
va' V1/Z' V 3 / 2 . <l
c.Ja,i I c.J1,j I

I II---T--- ----1---- .-

I I
I

6.CPl :
I I

6.CP1/2

(c) Mesh near the boundary ¢= ¢s

Fig. 2 Staggered mesh
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The vorticity W',j and pressure Pi+I/2,j+I/2 are to
be interpreted as averages over the corresponding

cells, {¢i-1I2<¢<¢i+II2' Ih-I/2, r/J< r/J<j+l/2}
and {¢,< ¢< ¢i+!' r/Jj< r/J< r/Jj+l}, respectively,
and velocities and vorticity fluxes as averages
over the sides of the cell. Then Eqs. (17), (18) and
(19) are discretized as

and

f..l,f/"j= (fl't1/2,j+ f/'-1I2,j) 12,
f..l¢f/j+l/2= (Rj+l+ f/j) 12,
f..lrfU 1I2= (f/'JI + f/j) 12. (29)

ary, there are points for vorticities and normal
velocities only, and the tangential velocity Ui,O is
defined at the vorticity point and used to get the

tangential vorticity Wi,O'

For nodes on the outflow boundary, rather
than trying to implement the Neumann condition

}u = oW=O
o¢ o¢

directly, we have adopted the simpler procedure.
The continuity equation, Eq. (17), together with
the above Neumann condition, gives

8,uf:I}2,j+II2+ 8¢ (ym v ) ~:l/2,j+1/2= 0, (30)
8,(vlym)~Y-8¢uUl= (wlymq~H',;J, (31)

and and, hence,

<Q, and Q¢ are defined at the v- and u-points,
respectively, and so the velocity components u, v
in Eqs. (20) and (21) should be represented by the
averages of corresponding velocity components at
neighbouring four points. In addition, we discret
ize the convective and diffusive terms of Eqs. (20)
and (21) using the explicit upwind differencing
and implicit Crank-Nicolson scheme, respective
ly. Thus we have

where the minus must be taken from the += sign,
when the average velocity f..l,f..l¢U or f..l,f..l¢V is
positive.

Implementation of boundary conditions (23) is
straightforward but at the solid and outgoing
boundary. For nodes on the solid boundary (Fig.

2(b)), Eg. (31) is modified to

(
V )k+l ut.t~- UUIa, ------my 1,0 t!.r/J1I2/2

=(~)k+l, (35)
y qp ',0

from which the vorticity W~.tl at the solid boun
dary can be computed. Note that, on the bound-

For the vortivity, we simply put

3.2 Solution procedure
The system of algebraic equations consisting of

Egs. (30) to (35) and those derived from boundary
conditions will form the complete system of equa
tions for the variables, uk+l's, vk+l's, and wk+l's.

Instead of trying to get the exact solution of this
complicated system of equations for the flow field
at t = (k +1) t!. r, we have tried to get an approxi

mate solution as follows. Noting that vorticities
wk+l's are coupled to velocities uk+l's and vk+l's

only through boundary conditions such as Eq.
(35), they are decoupled by assuming that the
vorticity is not generated continuously but spon
taneously only at the end of the interval t!.r. In
other words, on the solid boundary the normal
vorticity flux Q¢ is assumed zero during the
whole interval t!. r except just at the end of the
interval. Thus we have vorticity transport equa
tions for nodes on the solid boundary as

ar (wiymq~) ~,tl/2

= - a,(Q~/ymHtl/2-2Q;~Ni 1t!.r/J1/2 (36)

which will, together with those for internal nodes,
form the complete system for wk+l's. Now wk+l's
can be solved easily, as the resulting system of
algebraic equations is diagonal-dominant. Then

v=o at ¢=¢e'

Thus we can put

(34)

(32)

I !:,(m)k+l/2- Re f..lrU~ Y W i+II2,j
(Yi+l/2.j)

ar (wiymq~) ~JII2

= - a, (Q,Iym) ~,jll2_ a¢Q¢~JI/2

and
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(39)

velocities are computed from Eqs. (30) and (31)
with conditions on the normal velocity at the

boundary (the explanation of the method follows)
and, finally, the vorticities at the solid boundary

are adjusted using Eq. (35) so that the no-slip

condition is satisfied.
In brief, the numerical procedure is composed

of three steps. In Step 1 the vorticity field in the
region is computed implicitly assuming that the

vorticity flux from the solid wall is zero. In Step
2 the velocity field is solved from the vorticity

field obtained at Step 1 and boundary conditions

on the normal velocity only. Finally, in Step 3

vorticities at the solid boundary are adjusted so
that the no-slip condition is satisfied.

An efficient method to compute the three

dimensional velocity field from the continuity

equation and definition of vorticity in a rectan

gular Cartesian coordinate system is suggested by
Koh(1987) and is adopted in the present work.

The method is to decouple velocity components

in each direction from the others and solve them

one by one; for the axi-symmetric flow only v's

can be decoupled from u's. Since 0", and 0" are
commutable, i.e.,

(38)

Thus, by substituting 0"utJ1by Eq. (38), we have
from Eq. (31)

o,,(v/ym)f.jl +0 °(ymv)k+1
/:!,. ¢IIZ '" " IIZ,J

1 [( W )k+1 ]= /:!,.¢IIZ ymq~ I,J + O",Ut,;1

Eqs. (37) and (39) form the complete system of
equations for vk+l's and can be solved without

difficulty using, say, the successive-over
relaxation method. Once vk+l's are obtained,

Uk+I'S can be got from the continuity equaion,
Eq. (30).

Equation (37) can be got directly from Eq. (22)

as usual, but, if we had started from this elliptic

equation, it might not have been so simple to get

Eq. (39) and we should have had recourse to the

tangential velocity at the boundary again to get
the velocity field in the region. Another point to

be noted is that Eq. (22) is not obtained just by

taking the curl of the vorticity-defining equation,
Eq. (12), but from Eq. (18) which is the vorticity

defining equation divided by ymq~. The vector

equation

(42)

(40)

- (Yi+IIZ,J) mO"pt ~:I~ZJ

= arV~:I~Z,J + Q",7tl12,J'

and

V'Zv = - V' X ll)

decomposes into three scalar equations like

V'zu = _ awz + aWyay az

only when it is expressed In Cartesian coordi

nates. Decoupling of v's from u's in Eqs. (11)
and (12) would have been hard to spot, if the
Poisson equation, Eq. (40), had used as the go

verning equation. I)

Finally, we have, from Eqs. (24) and (25),
Eq. (37) is not applicable to velocities such as

vU,ys adjacent to the boundary ¢= ¢s, since
V-IIZ./S are at the outside of the domain and not
defined. Instead we can get the modified equation

as follows (Fig. 2(c)). For nodes adjacent to the
boundary ¢= ¢.. Eq. (30) becomes

i=I,2,···, imax-2,

we have fron Eqs. (30) and (31)

0",0", (v / ym) r:llz.J+ 0"0,, (ymv ) 7tl12.J

=0",(w/ymq~)7tl'Z.J' (37)

for internal nodes, i.e., for

and

or, operating with the difference operator 0",

1) It is not difficult to show that a similar proce
dure to compute velocity components in each
direction, one by one, can be applied also when
the equations are expressed in cylindrical or
spherical coordinates.
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Eqs. (41) and (42) are not at r=(k+ 1/2)Llr but
at (k+ I)Llr. It is found that the computed values
of unsteady pressure, especially contributions
from the term av /¢r, are rather sensitive to the
time-advancing scheme and that it gives better
results when the same time-advancing scheme is
used for each term. Thus, rather than computing
the pressure pk+1/2 at r= (k +1/2) Ll r using those
values already obtained such as OrU k + 1/2's and
Q:+1/2'S, we compute the pressure pHI at r= (k

+ l)L~r from values of velocities and vorticities at
r= Ui;>+l)Llr using the explicit Euler method.

4. Test Calculations and Results

The time-dependent flow past an impulsively
started circular cylinder at Reynolds numbers,
based on the radius a of the cylinder and oncom
ing velocity Uo, of I, 10, and 4500 has been
computed. We selected this 'classic' example
because exact analytical results of boundary-layer

approximation is availiable for small r( = Uol / a
< < I, where I is the time elapsed since the start
of motion) (Koh, 1993a).

To cover the wide range of Reynolds numbers
and also to check the grid-dependency of the
method, four different grids are used for the
simulation of the flow around the circular cylin
der. Figure 3 shows one of them (Grid 1). The

number of grid lines in Grid 1 is 71 in the ¢
direction and 36 in the ¢r-direction. 31 ¢-lines
meet the upper surface of the cylinder at 6 degree
intervals and, then, the meshes are increased
uniformly on both sides of the cylinder, but
restricted to half of the radius. Ll¢r's are also taken
very small near the body and increased in geomet
ric progression but to 0.5 again. Other grids are

x

Fig. 3· Computational grid for a circular cylinder
(Grid 1)

basically same as Grid 1 but different in details
such as the number of grid lines, the minimum
and maximum spacing, etc. Important parameters
of the grids used for the computation of the flow
around the circular cylinder are in Table 1.

The drag coefficients CD at Re = I and 10

calculated using Grid 1 and 3 are plotted in
Fig. 4(a) and (b), respectively, together with the
analytical result(Koh, 1993a),

ReCD=45[(JIe rO.
5
+1]'

rlRe«1. (43)

Fig. 4(a) shows that the agreement between our
computed values and analytic ones is quite good

up to r/Re~O.Q1. Figure 4(b), however, shows

that the numerical results computed using Grid 3
deviate slightly from the analytic ones at very

small time, say, at r / Re ~ 10-4
• This is because

the boundary layer at this small time is too thin to
be resolved by Grid 3 (Table I). Two computed
values of the drag coefficient at the same
Reynolds number are different one another at r /
Re ~ I again; values computed from Grid 1 (Fig.

4(a)) are larger than those from Crid 3 (Fig. 4(b».
This seems due to the blockage or "displacement"
effect.

Behaviour of the computed drag coefficients
with respect to time r is shown in Fig. 5. All the
drag coefficients shown in the figure are at Re =

4500 and calculated using the same grid (Grid 4)
but with different time intervals Ll r. The singular

Table 1 Grids for the flow around a circular cylin
der

Grid 1 Grid 2 Grid 3 Grid 4

<Ps -6.56 -6.56 -11.71 -6.56

<Pe 9.56 9.56 17.71 19.56

¢e 7.11 7.17 18.42 11.0

Grid Lines 71 x36 71 x36 71 x 36 91 x 51

!J.<P ..i. 0.0110 0.0110 0.0110 0.0110

!J.<P..ax 0.5 0.5 1.0 0.5

!J.¢..i. 0.002 0.001 0.02 0.0004

D.¢..ax 0.5 0.5 1.0 0.5
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(44)

(45)

b.ra=--
b.</Jmin

(3= 4b.r 2'
Re(b.cPmin)

and

still stable with b. r=O.01. With this large b. r,
however, it takes a rather long time, about 500
time-steps, for the fluctuation to die out sufficient
ly.

The stability and accuracy of the numerical
method depend not on b. r but on the ratio of it to

the convection and/or diffusion time across the
computational cell. Thus, considering that the

convection is mainly along the streamline and the
diffusion normal to the solid surface, we can

define two parameters, a and (3, such as

Table 2 Parameters a and fJ at Re=4500 for Gnd 4

The parameter a is, in fact, the Courant number,
and the factor 4 in the definition of the parameter

(3 is because the minimum physical spacing b.nmin
between two grid lines, cP = cPo (= 0) and cP = cPh
adjacent to the wall is half of b.cPmin= cPI- cPo.
Table 2 gives values of a and (3 at Re=4500 for
Grid 4, and the above discussions imply that the

stability of the present method depends only on

the Courant number a; it is stable when a< 1, a
reasonable result for the implicit method. Even

for a fairly large b.r=0.02, the appearance of
instability is delayed quite a lot; the procedure

appears to be stable up to about 250 time-steps,
but then it blows up in just a few time-steps. This

is because, just after the start of motion, the

vorticity is clustered near the surface where the

local Courant number is less than one owing to
T 0020.01

10 3 ,-------------------,

15.-------------------,
o

U
10

10 Re=lO
1

1
10- 4 10-3 10-2 10-1

(a)
T/ Re

10 3

'"u
(l)

Cl::

10 2

10 Re=10
1

1
10- 4 10-3 10-2 10-1

(b)
T/ Re

Fig. 4 Drag coefficient of an impulsively started
circular cylinder computed using two differ-
ent grids. (a) Grid 1; (b) Grid 3. --, Pres-
ent results; - - -, Analytic resuts, Eg. (43)

Fig. 5 Drag coefficients of an impulsively started
circular cylinder computed using various
time-step sizes (Re =4500, Grid 4)

initial condition makes the computed drag (and
the flow field as well) fluctuate for a while, but

the fluctuation dampens quickly and the numeri

cal procedure is stabilized. Though not shown in
the figure, we have found that the procedure is

b.r a fJ
10-5 9.1 X 10-4 0.0556

2x 10-4 0.0182 1.11

5 x 10-4 0.0455 2.78

0.001 0.091 5.56

0.01 0.91 55.6

0.02 1.82 111.1
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o:T= 0.1
500.1

oo
U 0Ie;

o
U

(-is\; ~~ ds )t.t

=(iSL_L~ds)M=_h.~At.t (46)
o pas p'

where s, n are coordinates along and normal to

the surface, p, fJ. the density and viscosity of the

fluid, and Po, Pb the pressure at the front and rear
stagnation point, respectively, and SL is the dis

tance from the front stagnation point to the rear

one. In the numerical procedure considered here,
this loss of vorticity will be recharged at the end

of the interval t.t in the cells adjacent to the wall,

10- 2,..----------

But the "steady" solution we are talking about
here does not mean the solution of the steady
algebraic equations, that is, the solution of Eqs.

(30) to (35) with the left-hand side of Eq. (32)

replaced by zero, but the stationary solution of
the approximate procedure, where the internal
vorticities are obtained first replacing Eq. (35) by

Eq. (36) and then vorticities at the solid boundary

are adjusted using Eq. (35). Physically, this means
that the vorticity in the region decreases continu

ously throughout the interval t. r and then is
recharged just at the end of the interval. In a

steady flow, the amount of vorticity convected out

through the outflow boundary during the interval

t.t will be the same as that flowing into the fluid
from the solid surface and thus equal to

r=O.1 r=500.1
105

Co 6Cox IQ5 CO 6Co x 105

0.70241 I 0.75643 4

0.70242 2 0.75640 I

0.70246 6 0.75643 4

(t,70253 13 0.75647 8

0.70266 26 0.75656 17

0.70306 66 0.75682 43

0.70373 133 0.75725 86

0.70240 0.75639

lux

2

5

10

20

50

100

o

the low velocity; only after the vorticity diffuses

deep into the fluid where the local Courant
number is greater than one, will instability
appear.

Values of transient drag coefficients at r=O.1
and nearly steady ones at r = 500.1 for a circular

cylinder at Re=4500, computed varying the time

step t.r, are in Table 32) and relative errors (CD

- CDO)/ Coo in Fig. 6, where CDO'S are the esti
mated values of drag coefficients for t. r=O. For

CD'S at r=500.I, we did not compute the flow

field with small time-steps from the start, but with

a fairly large time-step t.r=O.OOI up to r=500
and then switched to smaller time-steps. The fig

ure shows that the method has the global accu
racy of first order.

It is interesting that the nearly steady solution

at r =, 500.1 still depends on the magnitude of t. r.

Table 3 Computed drag coefficients of a circular

cylinder (Re=4500, Grid 4)

I. The values of CDO at ':\r=O are estimated ones.

2. ':\Co= Co- CDO

2) The value of about 0.76 for the drag coefficient
of a circular cylinder is rather small compared to
thl~ commonly accepted experimental value of
about 1.2. This seems due to the annihilation of
the vortex street as the result of the forced sym
metric flow. Roshko(1954), for example, shows
that the drag coefficient of a circular cylinder at
Re = 7250 is reduced to about 0.72, if the splitter
plate of length lOa is attached at the rear of the
cyJlinder.

Fig. 6 Relative error in drag coefficients of an
impulsively started circular cylinder versus

time-step size (Re=4500, Grid 4)
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(47)

(48)

and the vorticity at the wall will be added by the
amount, in average,

(Po-Pb)M
psLt!. n min '

or

- p.t!.W _ Vt!.t
Po- Pb - SLt!.nmin

/1;:
- Ret!.l/Jmin·

Thus we have

t!.Co Co- CDO t!.;:
Coo Coo Ret!.l/Jmin·

Figure 7 shows that the above relation holds quite
well over a fairly wide range of /1;: and Re. In
fact, /1Co is a little different from an error in the
ordinary sense. t!.Co itself is nearly proportional

to t!.;: and Coo can be estimated fairly accurately;
scattering at small t!.;: is thought largely due to
single-precision( 32-bit) arithmatic.

The flow around an impulsively started sphere
at Re = 10 has also been solved to check the
validity of the computer code to an axi-symmetric
flow. Figure 8 shows the computational grid used
to compute the flow around the sphere, which is
quite similar to that for the circular cylinder. In
Fig. 9, the computed drag coefficients of the
sphere at Re = 10 are compared with the analyti
cal result (Koh, 1993b).

ReCo= Xr( R:rs
, ;:/Re<{1.

Again the agreement between computed values
and analytic ones is quite good at small time.

To solve the system of algebraic equations for
both the velocity and vorticity, we have used the
point successive-over-relaxation method. The

relaxation factors used for the vorticity equation
are rather small, usually around 1.1, and go up to
about 1.5 only when /1;: is extremely large, and it
needs only about 10 to 20 iterations to reduce the
relative error to 10-6• On the other hand, the
optimum relaxation factors for the velocity are
fairly large ranging from about 1.9 to 1.95, which
means that the convergence will be rather slow; it
requires about ISO to 200 relaxations for the
relative error to go down to lO-s. All the compu
tations were carried out using personal computers
and work-stations. In IBM386DX, as an example,
about 100 time-steps can be executed in an hour
when Grid 3 (70 X 35 meshes) is employed, while

HP720 work-station can do about 600 time-step
calculations per hour with Grid 4 (90 X 50

meshes).

10-
1
~-------------.

0/
o

U 0
I 0
o u -2

u 10

-3
10

0: Re= 1(Grid*'3)
2 (G,ld'3)
5 (Grid*'3)

10(Gdd'3)
4500 (G,ld'4)

8'

Fig. 8 Computational grid for a sphere

10 3r------------------,

'"u
OJ

CL

-4
10

:

10 Numerical result

Fig. 7

-5
1a L_~5--J-_74--...L-.

3
,,-------L_-:o

2
,.----' -1

10 10 10 10 10

2M /Ret.1/J.o

Relative error in steady-state drag coefficients
of a circular cylinder versus time-step size
computed using Grid 3 and 4

Fig. 9

Equation (48)

Drag coefficient of an
sphere at Re = 10

10-1

TIRe
impulsively started.
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5. Conclusions

A numerical method to solve two-dimensional
and axi-symmetric incompressible flow has been

developed. The present method employs the
vorticity-velocity formulation and uses the equi

potential lines and streamlines of an inviscid flow

as coordinate lines. Velocities are computed
directly from the definition of vorticity and conti

nuity equation, with boundary conditions for the
normal velocity only, while conditions on the

tangential velocity at the boundary are used as
boundary conditions for the vorticity.

The accuracy, stability, and other characteris
tics of the numerical method have been discussed

based on the results of numerical simulation of
the unsteady flow around an impulsively started

circular cylinder and sphere. These numerical
experiments confirm that the method is very sta

ble and accurate.
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